
1. INTRODUCTION

In FAME simulations, it is useful to determine the mission-
averaged errors of the classical astrometric parameters posi-
tion, proper motion, and parallax.  The two FAME observ-
ables are a timing in the scan direction and a position meas-
urement in the cross-scan direction.  Ideally, one would use
both observables to calculate the astrometric parameters and
errors for each observed star, using least squares as a parame-
ter estimator.  The cost function of the estimation algorithm
would simply be the distance on the sky of the observation
point (as derived from the observables) from the actual loca-
tion of the observed star.  However, in general for FAME the
scan-direction timing information is orders of magnitude more
precise than the cross-scan information.  Since the observa-
tions for any given star are distributed widely in scan angle
(the local direction of the scan motion), the cost function just
defined is dominated by the large cross-scan position
variance.  This renders the parameter estimation process a
meaningless exercise in manipulating numerical noise.

The alternative is to use only the scan-direction timings
when the cross-scan single-measurement errors are large.  An
observation then consists of an “observation line”, which is
the limiting case of an infinitely squashed error ellipse with
infinite semimajor axis.  The location of the observation line
perpendicular to the line (i.e., the scan direction) is precisely
measured, but, effectively, the observation can fall anywhere
on the line (cross-scan direction).  An obvious measure to use
as the estimation cost function is then the perpendicular dis-
tance from the observation line to the star position.

When parallax is taken into account, the perpendicular dis-
tance is a nonlinear function of the astrometric parameters.
Since the parameters are all small (position is measured rela-
tive to a nearby fiducial point, e.g. the catalog position of the
star), one can linearize the perpendicular distance in the pa-
rameters.  This allows a straightforward use of linear least
squares to determine the parameters and, more importantly
from a simulation perspective, the parameter errors, from a set
of timing observations.  For FAME, typical errors are of order
100 µas or µas/yr, so the second-order cost function terms ne-
glected by the linearization are a factor of order  smaller104

than the first-order term.  The other error inherent in this ap-
proach is the neglect of cross-scan information in the observa-
tions.  For the majority of the FAME program stars, this error

is insignificant.  Hence, in general this approach is formally
quite precise.  On the other hand, for the FAME grid (or fidu-
cial) stars, where the precision of the cross-scan information is
within an order of magnitude of that of the scan-direction in-
formation, a method that takes advantage of that cross-scan in-
formation will likely yield somewhat better results than the
method presented in this paper.

This paper develops the perpendicular distance approach.
Section 2 examines the geometry of the problem.  The goal of
this section is to derive a useable cost function for the least
squares estimator.  The least squares implementation is explic-
itly shown in section 3.

2. PERPENDICULAR DISTANCE FROM
THE OBSERVATION LINE

2.1. Equations of the Observation Line and 
the Perpendicular Line

Define a local coordinate frame  whose origin is lo-[ , ]
cated at some reference position  on the sky in eclip-[ ref, ref]
tic coordinates, and assume the scale of  and  are such
that the local frame is suitably Euclidean (Figure 1). The refer-
ence position could be, e.g., a star’s catalog position, or in a
simulation it could be the center of a grid cell.  Suppose a star
is at some epoch  located at the position  in the lo-t0 [ 0, 0]
cal frame.  After a time  the star’s proper motion causes itt − t0
to move to , where  is[ 0, 0 ] + (t − t0 ) , = ,
the proper motion.  Superimposed on the proper motion is the
star’s annual parallax, which is an ellipse, say of semimajor
axis .  The center of the parallax ellipse moves according toa
the star’s proper motion.  Hence, at time t the geometry of a
star’s position is as illustrated in Figure 1.

The instantaneous direction of motion of the spacecraft field
of view as it scans the sky defines the scan angle, designated
q in Figure 1.  The scan angle is the angle of the FOV motion
with respect to a local ecliptic meridian through the star.  It
can be shown (Murison, 2000) that the scan angle is a func-
tion of position on the sky relative to the Sun and of the pre-
cession cone angle (the angle between the spacecraft spin axis
and the precession axis, which is in the nominal direction of
the Sun), given by

(1)sin q = Q
and
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(2)

cos q =
[sin2( − ? ) − cos2( − ? ) sin2 ] cos

sin( − ? )[1 − cos2( − ? ) cos2 ]

+
[cos2( − ? ) − sin2 ] cos( − ? ) sin
Q sin( − ? )[1 − cos2( − ? ) cos2 ]

where Q is the pair of quadratic solutions

(3)

Q =
cos( − ? ) cos sin
1 − cos2( − ? ) cos2

!
sin( − ? ) sin2 − cos2( − ? ) cos2

1 − cos2( − ? ) cos2

 is the precession cone angle, and  is the ecliptic longitude?

of the Sun.  These equations are very useful in simulations.
Furthermore,  and  may be expressed as explicit functions
of the Euler angles which tie the external reference frame to
the spacecraft body frame (Murison, 2000).  The Euler angles
in turn may be derived from simple analytical models or full
numerical integrations of the rigid body equations of motion,
depending on the desired completeness of the model of the
spacecraft scanning motion. 

If, in eqs. (1)-(3), we use  and  instead of = ref = ref
 and , we introduce an error in the determination= ¢ = ¢

of q by these equations.  To first order, the errors in  and sin q
 are proportional to  and .  As will becos q ¢ − ref ¢ − ref

seen later,  and  appear in the astrometric parametersin q cos q
estimation only when multiplied by small parameters, so the
error introduced in the calculation of q by using the local co-
ordinate origin rather than the true position of the star as
propagated through the analysis is second-order and therefore
ignorable.  Hence, for purposes of astrometric parameter esti-
mation using simulated observations, q as determined from
eqs. (1)-(3) can be treated as a calculated and therefore known
quantity, at least to first order, by setting  and .= ref = ref

Suppose an observation is made at time t.  For FAME, the
precision of observations in the cross-scan direction for most
stars — ~2-3 arcsec — is quite bad due to the cross-scan CCD
binning required by the observing scheme, while the precision
in the scan direction is over three orders of magnitude better at
580 microarcseconds (µas).  Thus, for most stars, there is ef-
fectively no cross-scan information contained in the individual
observations.  For the ~  grid (or fiducial) stars, no CCD103

binning is performed, so the full cross-scan precision of ~2
milliarcseconds (mas) is available.  This is still an order of
magnitude larger than the scan-direction precision.  Hence, in
terms of information contained in the observables that contrib-
utes to the precision of position measurements, the cross-scan
component of the observations is inconsequential for the ma-
jority of stars and, at best, relatively unimportant for the small
subset of grid stars.  Therefore, we will consider only the per-
pendicular distance y of the star from the observation line, as
illustrated in Figure 1. The observation line is defined as the
line passing through a given observation and perpendicular to
the scan direction at the time of the observation.  In Figure 1,
the scan-direction measurement is , and the cross-scanS
measurement is .  (The observations are with respect to theC
local coordinate frame origin.)

The perpendicular distance y of the an observed star from
the observation line will be a function of time and of the as-
trometric parameters , where  is the par-a, 0, 0, , a
allax ellipse semimajor axis (henceforth referred to as the par-
allax),  is the position at epoch , and  is[ 0, 0] t0 ,
the proper motion.  The equation of the observation line is

(4)= tan q + b
where b is the intercept in the local frame.  From an observa-
tion we have a point on the observation line, given by (cf. Fig-
ure 1)

(5)=
− C cos q + S sin q
− C sin q − S cos q

Plugging (5) into (4), we solve for b and obtain the equation
for the observation line,

(6)= tan q − S
cos q

Notice that the dependence on the cross-scan measurement, 
, has dropped out.C

Similarly, the equation of the perpendicular line is, from the
geometry of Figure 1, 

(7)= − cot q + b
for some intercept b.  Now, in the local frame the star position
is

(8)¢

¢
= 0 + (t − t0 ) + r cos u

0 + (t − t0 ) − r sin u

where the parallax ellipse parameters r and u will be deter-
mined later.  Plugging (8) into (7), we have the equation for
the perpendicular line,

(9)= ¢ − ( − ¢ ) cot q

2.2. The Perpendicular Distance
The perpendicular distance  follows from the intersectiony

point of the two lines.  Setting eq. (6) equal to eq. (9), we find
that the location of the intersection point is
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Figure 1 — Geometry of an observation.
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(10)i

i
= ¢ + ( S + ¢ cos q − ¢ sin q) sin q

¢ − ( S + ¢ cos q − ¢ sin q) cos q

Now, the perpendicular distance is

(11)y = ( ¢ − i )2 + ( ¢ − i)2

Hence, using (10), we have the simple result
(12)y = S + ¢ cos q − ¢ sin q

where  and  are given by (8).¢ ¢

2.3. Parallax Ellipse Geometry
As the Earth orbits the Sun, the finite distance of a star will

result in the apparent motion of that star with respect to very
distant stars.  This motion is an ellipse whose semimajor axis
is inversely proportional to the star’s distance from the Sun.
A star in the direction of one of the ecliptic poles will execute
a circle.  For ecliptic latitudes closer and closer to the ecliptic
plane, the eccentricity of the parallactic ellipse increases, until
the ellipse of a star on the ecliptic has degenerated into a line
segment.  Hence, the eccentricity is a function of ecliptic lati-
tude.  Consider the pole case which is a circle: .x2 + y2 = a2

As viewed from the star, the Earth’s path is this circle.  Now
tilt the solar system by an angle , which is equivalent to2 −
considering a star with ecliptic latitude .  The transformation
of coordinates is  and .  Hence, the equation of= x = y sin
the circle as projected onto the inclined plane is

(13)
2

a2 +
2

a2 sin2 = 1

which is an ellipse of eccentricity 

(14)e = 1 − b
a

2
= cos = cos

Changing to polar coordinates,  and , we= rcosu = r sinu
obtain from (13) the equation of the ellipse in polar form,

(15)r = a sin ¢

1 − cos2 ¢ sin2u

where  is the ecliptic latitude of a star, a is the parallax (i.e.,¢

the ellipse semimajor axis), and u is the polar angle.  
The ellipse polar angle is related nonlinearly (by projection)

to the true anomaly  of the Earth’s (assumed circular) orbit
around the Sun, and hence to the longitude of the Sun.  The el-
lipse polar angle u is the projection of the mirror of .  We
need to relate the linear motion of the Sun to the nonlinear
(with time) angle u.  Consider the circle and the angle E
shown in Figure 2.  If the circle corresponds to the parallax el-
lipse at the ecliptic pole (so that it reflects the Earth’s circular
orbit), then the angle E is related linearly to the ecliptic longi-
tudes of the star and the Sun and may be written

(16)E = 2 − ( ¢ − ?)

where  is the ecliptic longitude of the Sun.  As the latitude?

of the star moves away from the pole, the circle becomes an
ellipse, and the angle E projects onto the angle u, as
illustrated.  Hence, we have the relation

(17)acosE = rcosu
between E and u.1  Plugging (15) into (17), we find

(18)

cos2u = cos2E
1 − cos2 ¢ sin2E

sin2u =
sin2

¢ sin2E
1 − cos2 ¢ sin2E

 

 

 

 

 

 

 

By (18) and (16), (15) becomes the simple relation

(19)r = a 1 − cos2
¢ cos2( ¢ − ? )

This is the equation of the position of a star on the parallactic
ellipse as a function of time and ecliptic latitude.  

From the geometry of Figure 1, we can write the ecliptic co-
ordinates of the star in terms of the astrometric parameters:

(20)¢ = ref + ¢ = ref + 0 + (t − t0 ) + r cos u
¢ = ref + ¢ = ref + 0 + (t − t0 ) − r sin u

2.4. First-Order Approximation of the Perpendicular Distance
Up to this point, the expressions describe the observation

geometry exactly — no geometrical approximations have been
made.  Unfortunately, eq. (12) is nonlinear in the unknown pa-
rameters , which would require thep h a, 0, 0, ,
use of a nonlinear algorithm for parameter estimation.  How-
ever, we can take advantage of the fact that the unknown pa-
rameters are all small (i.e., ).  Hence, we may easilypipk ^ pj
calculate a first-order approximation to eq. (12) that is linear
in the parameters, which then allows us to use much faster and
simpler linear least squares for parameter estimation.  Substi-
tute (20) into (19) and, to first order, we find
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1 The angle E is called the eccentric anomaly in the two-body problem of celestial mechanics.  It is similarly used there to render a polar form of the equation of the
two-body elliptical orbit into an analytically simpler shape.  This then leads to Kepler’s equation relating the linear mean motion to the nonlinear true anomaly.

Figure 2 — Projection of the tilted parallax circle into an ellipse.  The pro-
jection of the angle E is the ellipse angle u.  The angle E is related to the solar
longitude by .E = 2 − ( ¢ − ?)
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and

(28)
b=

−
i=1

n
wi SiRi

i=1

n
wi Si sinqi

−
i=1

n
wi Si cosqi

i=1

n
wi (ti −t0) Si sinqi

−
i=1

n
wi (ti −t0) Si cosqi

The solution for the unknown parameters is then

(29)p = C $ b
where  is the covariance matrix.  A straightforwardC hM−1

application of propagation of errors (e.g., Press et al., 1992)
yields the formal parameter errors from the diagonal compo-
nents of the covariance matrix:

(30)k = Ckk S

for parameter , and where  is the standard error of thepk S
timing observations .  The formal parameter cross-S
correlations are contained in the off-diagonal components of
the covariance matrix,

(31)jk = C jk S, j ! k

The standard error  is assumed for simplicity to be theS
same for all observations (i.e., ), so that it is a com-i h S
mon factor that can be pulled out of  in eqs. (30) and (31).C
This need not, of course, be the case in actual practice.

It is worth noting that the parameter standard errors  arek
only functions of time t, ecliptic coordinates , and( ref, ref)
precession cone angle .  They are not functions of the pa-
rameters  themselves.  Therefore, we don’t need to know  inp p
order to determine , which is a useful general property ofp
linear least squares parameter estimation.

This approach has been implemented in certain FAME simu-
lations (Murison, 2000, and successive papers) and found to
work quite well.

(27)
M=

i=1

n

wi Ri
2

i=1

n

wi Ri sinqi −
i=1

n

wi Ri cosqi
i=1

n

wi (ti −t0)Ri sinqi −
i=1

n

wi (ti −t0)Ri cosqi

i=1

n

wi Ri sinqi
i=1

n

wi sin2qi −
i=1

n

wi sinqi cosqi
i=1

n

wi (ti −t0)sin2qi −
i=1

n

wi (ti −t0)sinqi cosqi

−
i=1

n

wi Ri cosqi −
i=1

n

wi sinqi cosqi
i=1

n

wi cos2qi −
i=1

n

wi (ti −t0)sinqi cosqi
i=1

n

wi (ti −t0)cos2qi

i=1

n

wi (ti −t0)Ri sinqi
i=1

n

wi (ti −t0)sin2qi −
i=1

n

wi (ti −t0)sinqi cosqi
i=1

n

wi (ti −t0)2 sin2qi −
i=1

n

wi (ti −t0)2 sinqi cosqi

−
i=1

n

wi (ti −t0)Ri cosqi −
i=1

n

wi (ti −t0)sinqi cosqi
i=1

n

wi (ti −t0)cos2qi −
i=1

n

wi (ti −t0)2 sinqi cosqi
i=1

n

wi (ti −t0)2 cos2qi

(21)r j a 1 − cos2
ref cos2( ref − ? )

which is conveniently linear in the unknown parameter  anda
independent of all the other unknown parameters.  Using eqs.
(18)-(20) in (12) and expanding again to first order, we obtain
the useful result

(22)

y j S
−a [sin( ref − ? ) sin q

+ sin ref cos( ref − ? ) cos q]

+ 0 + (t − t0 ) cos q
− [ 0 + (t − t0 ) ] sin q

Eq. (22) gives the perpendicular distance as a function of time
(both explicitly with the proper motion components and im-
plicitly via the longitude of the Sun, ), the high-precision?

timing observable , and the derived parameter .S q

3. LINEAR LEAST SQUARES SOLUTION

Let the least squares cost function be the perpendicular dis-
tance as approximated by (22).  Then

(23)2 =
i=1

n
wi Si − a Ri

+ 0 + (ti − t0 ) cos qi

− [ 0 + (ti − t0 ) ] sin qi
2

where

(24)
Ri h sin[ ref − ?(ti )] sin qi

+sin ref cos[ ref − ?(ti )] cos qi

the  are the individual observation weights, and the wi = 1
i
2 qi

are calculated from eqs. (1)-(3).  The normal equations follow
from determining the stationary points of  in the parameter2

space,

(25)
Ø 2

Øp = 0

where  are the unknown parameters.  p h a, 0, 0, ,

Note that eq. (23) is linear in the unknown parameters.  We
may therefore employ linear least squares for our parameter
estimation.  Taking the derivatives of (23), we find that eq.
(25) can be written

(26)M $ p = b
where
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